Robust Transfer Principal Component Analysis with Rank Constraints
نویسنده
چکیده
Principal component analysis (PCA), a well-established technique for data analysis and processing, provides a convenient form of dimensionality reduction that is effective for cleaning small Gaussian noises presented in the data. However, the applicability of standard principal component analysis in real scenarios is limited by its sensitivity to large errors. In this paper, we tackle the challenge problem of recovering data corrupted with errors of high magnitude by developing a novel robust transfer principal component analysis method. Our method is based on the assumption that useful information for the recovery of a corrupted data matrix can be gained from an uncorrupted related data matrix. Specifically, we formulate the data recovery problem as a joint robust principal component analysis problem on the two data matrices, with common principal components shared across matrices and individual principal components specific to each data matrix. The formulated optimization problem is a minimization problem over a convex objective function but with non-convex rank constraints. We develop an efficient proximal projected gradient descent algorithm to solve the proposed optimization problem with convergence guarantees. Our empirical results over image denoising tasks show the proposed method can effectively recover images with random large errors, and significantly outperform both standard PCA and robust PCA with rank constraints.
منابع مشابه
Generalised Scalable Robust Principal Component Analysis
The robust estimation of the low-dimensional subspace that spans the data from a set of high-dimensional, possibly corrupted by gross errors and outliers observations is fundamental in many computer vision problems. The state-of-the-art robust principal component analysis (PCA) methods adopt convex relaxations of `0 quasi-norm-regularised rank minimisation problems. That is, the nuclear norm an...
متن کاملEfficient algorithms for robust and stable principal component pursuit problems
Abstract. The problem of recovering a low-rank matrix from a set of observations corrupted with gross sparse error is known as the robust principal component analysis (RPCA) and has many applications in computer vision, image processing and web data ranking. It has been shown that under certain conditions, the solution to the NP-hard RPCA problem can be obtained by solving a convex optimization...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملNon-Convex Rank Minimization via an Empirical Bayesian Approach
In many applications that require matrix solutions of minimal rank, the underlying cost function is non-convex leading to an intractable, NP-hard optimization problem. Consequently, the convex nuclear norm is frequently used as a surrogate penalty term for matrix rank. The problem is that in many practical scenarios there is no longer any guarantee that we can correctly estimate generative low-...
متن کاملFRPCA: Fast Robust Principal Component Analysis
While the performance of Robust Principal Component Analysis (RPCA), in terms of the recovered low-rank matrices, is quite satisfactory to many applications, the time efficiency is not, especially for scalable data. We propose to solve this problem using a novel fast incremental RPCA (FRPCA) approach. The low rank matrices of the incrementally-observed data are estimated using a convex optimiza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013